Is systems thinking science or poetry?
Seven signs and symptoms of shamanism or pseudo science
https://bit.ly/2vQ0Hmi
Copyright 2016 Graham Berrisford. One of
several hundred papers at http://avancier.website. Last updated 17/04/2019 15:53
This essay begins by exploring the notion of pseudo science.
It then explores whether social systems thinking is science or poetry.
Where poetry means more or less related to reality, but open to whatever interpretation the reader brings.
It also asks: What does “systems thinking” add to “human situation thinking”?
Finally, the paper draws a conclusion that is wholly unrealistic.
Contents
Preface
on questionable terms and analogies
Seven signs or symptoms of shamanism or pseudo
science
Relating
social systems thinking to different sciences
Footnotes
on other things readers have mentioned
General system theory was supposed to establish concepts and
principles common to all sciences.
Common to all sciences is the scientific method, which involves testing a reality against a theory.
You, a human actor, act in different roles in a variety of systems that have been carefully designed and tested.
However, in “systems thinking” discussions, sociologically-inclined thinkers often present untestable theories
They express opinions and make assertions about human society, politics and economics.
Lending gravitas to these assertions, they often borrow words and ideas from harder sciences, but questionably.
This paper discusses ambiguities
in the use of words like complex, adaptive,
emergence, holism, linear and self-organisation
Some refer to
disorderly situations as complex, but other consider the absence of order to be
simple rather than complex.
Some refer to
unpredictable systems as complex, but chaos theory shows that very simple
systems can be unpredictable.
Some systems thinking discussion is based on analogies rather than commonalities.
The trouble
is that conclusions drawn from analogies, metaphors and similes are often
misleading.
Ackoff, Bausch and others have
deprecated looking at a society as though it were a biological organism.
Some see patterns in purely mathematical systems that resemble patterns in social behavior.
They see patterns revealed by running System Dynamics models like strange attractors and fractal geometry.
And then find analogies for those patterns in human cognition or human society.
But analogies are not explanations.
Some, deliberately and radically, alter the meanings of terms used in science.
Luhmann’s autopoietic social system is metaphysical, and radically different from an autopoietic biological organism.
Science is more
than asserting a theory; it involves testing assertions in an attempt to
confirm or deny them.
Pseudo science is
the practice of asserting things to be true in a way that sounds scientific,
but without the support of evidence accepted by scientists.
In December 1999, a poll of scientists in Physics World magazine ranked Richard Feynman (1918- 88) as one of ten greatest physicists of all time.
He left us with insights that go beyond the world of physics.
He spoke about pseudo science in this BBC interview in 1981 (the whole series is worth viewing).
“Because of the success of science, there is a kind of a pseudo science.
Social science is an example of a science which is not a science.
They follow the forms. You gather data, you do so and so and so forth,
but they don’t get any laws, they haven’t found out anything.
They haven’t got anywhere – yet. Maybe someday they will, but it’s not very well developed.
“At an even more mundane level, we get experts on everything that sound like they are sort of scientific, expert.
They are not scientists. They sit at a typewriter and they make up something like:
‘a
food grown with a fertilizer that’s organic is better for you than food grown
with a fertilizer that is inorganic’.
Maybe true, may not be true. But it hasn’t been demonstrated one way or the other.
But they’ll sit there on the typewriter and make up all this stuff as if it’s science.
And then become experts on foods, organic foods and so on.
There’s all kinds of myths and pseudo science all over the place.
“Now, I might be quite wrong. Maybe they do know all these things. But I don’t think I’m wrong.
See, I have the advantage of having found out how hard it is to get to really know something.
How careful you have about checking your experiments, how easy it is to make mistakes and fool yourself.
I know what it means to know something. And therefore, I see how they get their information.
And I can’t believe that they know when they haven’t done the work necessary.
They haven’t done the checks necessary, they haven’t done the care necessary.
I have a great suspicion that they don’t know and that they are intimidating people by it.
I think so. I don’t know the world very well but that’s what I think.” (Richard Feynman, transcribed from a 1981 BBC TV programme)
As Thomas Edison said: “Genius is one percent inspiration, ninety-nine percent perspiration.”
In science, the one percent inspiration is the creation of a hypothesis (which may be intuitive, near magical).
The ninety-nine percent perspiration is the work to test whether that hypothesis is true - whether it is knowledge or only supposition.
This work involves logical analysis, research, experiments and testing of physical realities.
Software
engineering is not immune to pseudo science.
System design
fashions (OO, CBD, SOA, Microservices) come and go with little or no testing of
one fashion against another.
As long the code
works, people don’t look into whether it works optimally or not.
Karl Popper advanced
the view that hypotheses or
theories should be readily
falsifiable.
In other words, a
well-formed hypothesis or
theory is potentially
disprovable by measuring test results.
Consider for
example the following assertions, proposals, statements, hypotheses or
theories.
Four well-formed theories
Eating carrots gives
you night vision.
This is easily tested, and known to be wrong.
The myth derives from rumours that British pilots in WW2 had night vision powers thanks to their healthy diet of carrots.
Gum stays in your
stomach for seven years.
This is easily tested by placing some gum in stomach juices for a while.
Tests show any food substance we swallow is dissolved and excreted within days - most within hours.
Eating cheese before
bed will give you nightmares.
Tests by the British Cheese Board found no relation between eating cheese and an increase in nightmares.
Organic foods are more nutritious and safer.
This is harder to
test, since it requires measuring many people over a long time.
In 2012 Stanford University’s Centre for Health Policy did the biggest comparison of organic and conventional foods.
It found no robust evidence for organics being more nutritious.
In 2016, a review repeated its finding: “Scientific studies do not show that organic products are more nutritious and safer than conventional foods.”
Four not so well-formed theories
The biomass on earth is a coherent organism
equipped with a sort of intelligence
How could this
assertion be disproved?
It makes a peculiar, one might say poetic, use of the words “coherent organism” and “intelligence”.
To say the biomass is an organism is an analogy whose meaning and testability is unclear – more on this later.
IBM is a complex adaptive system
Is this a theory or an axiom?
Read this critique of Complexity science.
Raising the interest rate is
the best way to reduce inflation
Even if it
reduces, the trouble is, we don’t know what the alternative policy would have
done.
“we cannot simultaneously compare two policies if one says to raise interest rates and the other says to lower them.
Our experiments are not repeatable. You can’t dip your toe in the same river twice.” Steven E Wallis
This management “intervention” will solve your
problem
Again, it may be
surprisingly difficult to disprove this assertion.
Suppose managers invest both financial and political capital in making some recommended changes.
After they have done that, they may have no wish to measure or test the effect of those changes.
If they do measure the results/outcomes, the findings may be disputable because:
· failure may be attributed to any unforeseeable interference from sources beyond control
· success has a thousand fathers – others may claim the success is down to them
· failure or success may be attribute to the Hawthorne Effect.
The Hawthorne Effect is a well-documented phenomenon that affects many experiments in social systems.
It is the process where human subjects of an experiment change their behavior, simply because they are being studied.
E.g. Productivity improves, not because of any particular management intervention, because managers show interest in their workers.
A doctor who treats people without the support of evidence accepted by scientists is often called a shaman.
That may be unfair on real shamans, but here, the word shamanism is used in that narrow sense.
Watch out for
assertions, proposals, statements, hypotheses and theories associated with any
of the following.
-1- A hidden agenda
A proposal may be made to advance a hidden agenda, perhaps a political one.
-2- The misuse of scientific terms or concepts
A proposal may use words from hard sciences, but use them differently, or questionably.
Doing this may give a theory the appearance of certainty without the substance.
E.g. Many social systems thinkers use words that are drawn from harder science, or sound as though they are.
Related papers question their use of the following terms:
· chaos, complex adaptive system, complexity theory, emergent properties, entropy, fractal geometry, non-linear dynamics, self-organising system and strange attractors.
And some thinkers, deliberately, radically alter the meanings of terms used in science
E.g. Luhmann radically reinterpreted the biological concept of “autopoiesis”.
-3- A misleading analogy
A proposal may be based on belief in a misleading analogy.
“Software
engineering is like electrical or electronic engineering.”
“Enterprise
architecture is like building architecture, or city planning.”
-4- The fear of
calamity
This tactic has often been used by politicians and economists.
There must be a wrong before people will buy a remedy, a
condition before a cure.
Fear of a calamity may scare people into swallowing the medicine that is offered.
-5- A questionable correlation or statistic
A proposal may be based on misconstruing a correlation or statistic as a cause-effect relationship.
Example 1: an
increase in sales of ice cream causes an increase in deaths by drowning.
Does the former
cause the latter? Of course not; another variable (sunshine) triggers both
outcomes.
Example 2: so
far, scientific research has concluded that giving vaccines to children does
not cause autism.
It is presumed
that the first symptoms of autism are related to another variable - the age
when vaccines are given.
-6- The rare
success case
Suppose the
prescription is: “Adding people to a
late-running project brings it back on track.”
Twenty managers
test that theory on real projects; 19 projects fail, but no manager publicises that fact.
One project
succeeds, and the manager writes up the project as a case study published in –
say – The Harvard Business Review.
CEOs all over the
world read the paper and urge late-running projects in their organization to
add more people.
-7- A theory that cannot be disproved
The average shelf life of conclusions published in scientific journals is surprisingly short (reference to be added).
Pseudo-scientific theories can survive longer than scientific ones, because it is impossible to disprove them.
Suppose I announce
a theory and use it to recommend an action.
If the action it
succeeds, you may be suspicious, because success has a thousand fathers.
If the action
fails, I may say you didn’t try hard enough, or unforeseeable phenomena got in
the way.
E.g. a consultant may assert a debt crisis can be solved by
accruing more debt (a de facto policy implemented today).
Without evidence
to support or contradict the policy, you can’t rationally argue for or against
it.
If the policy
fails it’s only because you did not pile on more debt fast enough, and so, the
guru is always right.
Of if the policy
succeeds, it might be down to other influences – say, unforeseeable market
forces.
Think of a model showing inter-stock flows, represented in the form of a causal loop diagram (CLD).
Forrester said all systems can be modelled thus.
Some draw a CLD to present a political message in a pseudo-scientific way.
How to test it? You have three verification tools; let me start with the weakest.
Social verification
To move from subjective to objective you can research other views and seek peer review.
E.g. Somebody posted a CLD on the internet to express their theory that ever-increasing GDP was the problem the world must address.
As was pointed out, he omitted that boosting GDP is the best the way to reduce and even reverse population growth - surely the bigger problem.
Logical verification
I guess few CLD or other models can be analysed on purely logical grounds, but surely some can.
Empirical verification
By far the best way to demonstrate the relevance of a CLD is to run it as a simulation of the reality that it represents and compare the two.
Of course that is often very difficult.
For more on this see the "Scientific System Dynamics" section below.
To identify a system is to abstract an island of orderly behavior from the infinite complexity of ever-changing universe.
People do casually point to an entity in the world (say IBM) and call it a system; many systems thinkers have recognised this is naive.
Suppose somebody refers to “the Chilean economic system”; what behaviors are included? Any two people may answer that question very differently.
If systems thinking is to be scientific, there must be some describable and testable behavior.
The behavior of |
can be tested for
conformance to |
The planets |
an astronomer’s descriptions of their orbits. |
A pair of sticklebacks |
a biologist’s description of their mating ritual. |
A US government |
the description of those behaviors in the US constitution. |
So, scientific systems thinkers create system descriptions (theories) that lead to predictions testable in operational systems (reality).
The hypothesis-test process might be distilled thus:
1. Scope: observe or envisage an entity as realising the repeatable activities of a system.
2. Abstract: describe/model the effects of those activities on measurable state variable values.
3. Realise: observe (or build and set) the social network in motion, and note the results/outcomes of activities
4. Test: check that the results/outcomes of the social network match what the system description/model predicts.
If the reality departs from prediction, then the system description may be discarded or changed.
Or else, the real-world entity might be changed until it behaves as predicted.
You can use Systems Dynamics to model anything describable in terms of flows between stocks, populations or resources.
The stocks may be of passive structures (food items, widgets, hospital beds) or actors (machines, rabbits, viruses).
How to use Systems Dynamics in a scientific way to predict changes in stocks or populations?
The hypothesis-test process runs thus.
1. Scope: observe or envisage an entity as a set of stocks related by inter-stock flows.
2. Abstract: describe/model the effects of those flows (events) on measurable stock (entity) levels.
3. Realise: set the abstract model in motion, and note the trajectory of stock level changes over time.
4. Test: check that stock levels in the real world change over time as they do in the model.
You start with a theory of how discrete stocks/resources increase and decrease in response to events.
You model events as flows that connect one stock to another, perhaps in a causal loop diagram.
You turn that static diagram into dynamic model of flows between stocks.
Then run the model forwards from an initial state to predict the long-term outcome of those interactions between stocks.
Simply running the model does not prove that the abstract model matches a corresponding reality.
And proving it may be difficult for many reasons.
· It may be impractically difficult to test model.
· Subtly different versions (or initial states) of the model may lead to substantially different outcomes.
· Stocks and flows outside the model may cause the real world system to depart from the abstract one.
· Human actors in the real world may respond to outcomes by changing the dynamics of the system they play roles in.
· Even if concrete and abstract systems produce the same result/outcome at one point in time, the trajectories of change to that point may differ.
Also, the following is a conjecture, rather than a fact I have evidence for.
Suppose the changes to real world variables and modelled variables follow the same trajectory, but merely continue a past and linear trend?
As a predictor, a
model matching straight line growth in reality is less convincing than one
which matches a more complex graph.
Why?
Two different models may produce the same straight line graph - more likely than produce same complex curve.
Suppose that the straight line graph matches behavior in the real world, then, which of the two models is correct?
The straight lines produced by those two models may (later) change angle (dramatically or not) at different points in time.
Before reading
this section, watch any video on YouTube from Hans Rosling
Especially “200 Countries, 200 Years, 4
Minutes - The Joy of Stats”.
We surely are headed for a worldwide calamity, sooner or later.
If a virus, a volcano, a comet, magnetic pole switching, or global warming doesn’t get us sooner, the sun will burn out later.
Also, infinite population growth is impossible, and has now reached point where dramatically catastrophic effects are occurring.
However, we still can’t predict the weather next month, and it is difficult to be confident about predictions of when a particular catastrophe will happen.
“In the 1970s, the Club of Rome (Meadows et al, 1972) released its first report “The Limits to Growth”.
The scientists and philosophers of the Club took a systemic look at the development of present-day civilizations
by consideration the interactions of global subsystems in the areas of population growth, agricultural production, dwindling resources and pollution.
On
the basis of the computer simulation of the future course of the world ecology,
they predicted worldwide calamity by the year 2025.” Ref. 4
Meadows’ team modelled industrialization, population, food, use of resources, pollution.
They modelled the historical data, then several scenarios up to 2100, with varying assumptions about action on environmental and resources.
One model – the “business-as-usual” model - predicted a catastrophic collapse in the economy, environment and population before 2070.
Nearly half a century after the report was published, it was pointed out that the “business-as-usual” model matches reality pretty well so far.
Look at the graphs in this article.
A conclusion was drawn that the catastrophic collapse will happen when the model predicts it will happen.
So far, the graphs show near-to-linear continuations of past trends, which is a default prediction.
The predicted break from linear change to non-linear change may well happen.
But it remains impossible to be confident the model predicts when a catastrophe will occur.
Or that the primary causes will be the same as those in the model.
Or that changes will be dramatically catastrophic, because when things start to go badly wrong, some international action is likely.
(For example, using more of the massive amount of food that is either rejected or thrown away by supermarkets.)
For sure, some actions (e.g. on renewable energy, on plastics) should be taken now.
The aim here is not to question that, only to explore what it takes to be confident that a system model or theory is accurate.
By the way, aside from a doubling of the global population, what has happened in 50 years since “The limits to growth” was published?
Did you watch
“200 Countries, 200 Years, 4 Minutes - The Joy
of Stats”?
Surprisingly, the United Nations report huge advances in the health, life expectancy, education and welfare of people across the globe.
Again, this not to question the need for actions now.
It is only to explore the effort it takes to be confident that a system model or theory is accurate.
General system theory (GST), which emerged in the 1950s, is about concepts and principles applied in each of sciences.
However, much of what people now call “systems thinking” started much earlier, in 19th century sociology.
Read Systems thinkers and their ideas for a history that contains links and references to many systems thinkers.
Many sociologists have looked at a social network as though it were a biological organism.
Considering social stability, some have applied the idea of homeostasis, as in a biological organism, to a society.
Considering social reorganisation, some have applied the notion of evolution, after Darwin, to a society.
A misleading analogy?
Drawing an analogy between sciences isn’t the same as applying the scientific method.
Ackoff deprecated the organismic model of a social network; as others have done.
“Organic analogies are inadequate as models of social systems.” Ref. 4
David Seidl (2001) said the question facing a social system theorist is what to treat as the basic elements of a social system.
“The sociological tradition suggests two alternatives: either persons or actions”
A business might organise its actions so as to be regular or repeatable, allowing actors to organise themselves to perform those actions.
It might organise its actors under a management structure, allowing them to determine their action they perform.
Some systems thinkers focus on the management structure of organized institutions.
The
fear of calamity?
Ackoff was a doomsayer about the condition of human organisations.
“Most contemporary social systems are failing. Head Start is said to be a failure.”
“The US has a higher percentage of its population in prison than any other developed country, but nevertheless has the highest crime rate.”
“Most of the corporations formed each year fail before the year is up. Half the corporations on the Fortune 500 list twenty-five years ago no longer exist.”
“One could go on citing deficiencies in the management of our principal social systems.” Ackoff 2003
The initial premise is questionable in many ways.
To begin with, most contemporary social systems succeed to some extent.
Some failures are inevitable - because the goal is impossible, it is no longer wanted, or some reason other than poor management.
There are countless reasons why managing human institutions is inherently difficult, and failures don’t have common cause.
And bear in mind that individuals in a population must die to make room for new ones.
Friedrich von Hayek used the term scientism in relation to the central planning of a nation’s economic system.
Clearly, governments must collect data for planning.
But can they monitor and/or direct any large and complex socio-economic entity from a central Operations Room?
Hayek knew of Beer and Cybersyn, and may have had them in mind when writing his Economic Sciences Nobel prize acceptance of 1974.
The speech is entitled “The Pretence of Knowledge” (click on the hyperlink to read it).
Hayek criticized centralized planning for being unresponsive to shifting realities.
He argued it was bound to fail, because it could never do what the free market’s price mechanism could do.
It is impossible to codify, collect and aggregate the knowledge, judgements and whims of individuals in the market, which guide their behavior.
In what useful sense can we refer to any large and complex socio-economic entity as a single “system”?
A nation is an entity comprising many individuals who act in countless roles in countless describable systems, some with conflicting aims.
There are infinite boundable systems, each influenced or controlled to some degree by countless other systems.
Those who see societies and institutions in terms of power relationships tend to contrast:
· centralization of control - totalitarianism, a top-down management hierarchy
· distribution of control - individualism, a participatory democracy or anarchy.
An implicit
agenda?
Beer attempted to reconcile the two views above by building information feedback from workers into a centralised control and planning system.
Other systems thinkers have looked to advance “participative democracy”.
“If systems theory is applied to social processes in the manner exemplified in this book, it offers practical and ethical methods for advancing participatory democracy.” (Ref. 4)
Bausch considered that systems thinking should herald a new era of social organization.
The question here is not whether “participative democracy” a good thing, it is whether systems thinking has a political agenda.
Some see sociological systems thinking not a science, but as set of informal mental models for analysing and changing human situations.
Still one wants to know: Is there a correct interpretation of a mental model? Or only more or less useful interpretations?
Which mental models have proved successful and which have failed, in which situations?
Bausch (2001) reviewed many sociological systems thinkers, some more metaphysical than scientific.
For example, he pointed to Feynman-like criticisms of Parson’s work
“any critique of the Parsonian framework must contend with its loose conceptual structure” (Buckley quoted in Ref. 4)
Parson’s thought is “internally contradictory”, and “provides support for a variety of partial, often mutually antagonistic interpretations” (Alexander quoted in Ref. 4)
Some management scientists see business systems in terms of human psychology.
Many businesses use Myers-Briggs personality type indicators (MBTI) to categorise their employees before matching them to roles.
But the MBTI is deprecated by most psychologists
“... the MBTI exhibits significant psychometric deficiencies, notably including poor validity and poor reliability.”
https://en.wikipedia.org/wiki/Myers%E2%80%93Briggs_Type_Indicator
A different kind of approach is Spiral Dynamics.
"Spiral Dynamics draws on the original work of Clare W. Graves, Ph.D, who began to develop a comprehensive model of bio-psychosocial development in the 1950s
It differentiates people by their ways of thinking rather than by personality types.
The first managerial application was published in the Harvard Business Review in 1966."
It is said to "go beneath the surface of human systems to help you understand the whole picture and the issues you need to tackle to steer forward."
https://spiraldynamics.org/about/what/
Spiral dynamics theory classifies people’s “world views” into 8 kinds.
It proposes people take all 8 views at once and mix them in different degrees when viewing different realities.
As far as I know, the theory is not taken seriously by most psychologists.
A misuse of scientific terms?
An advocate of Spiral Dynamics made this assertion.
"Spiral
dynamics theory refers to social systems
comprised of emergent, unfolding stages of cognitive awareness, levels of
consciousness.
How these interact and harmonize into a coherent social organism is the focus of complex adaptive systems."
The quote is acceptable grammatically, but does it make sense semantically?
The biological analogy (social organism) may be poetic, but its meaning and testability is unclear.
The tern “complex adaptive system” sounds scientific, but see above.
A shaman can be right; may be effective on the basis of their personal skills and experience.
A shaman may prescribe medicines that science later demonstrates to be effective.
The gripe here is not shamans per se, it is presenting shamanism as though it is science.
And the misuse of terms - starting with the term “system”.
In much systems thinking discussion, it is unclear what the system is, or what the term “systems thinking” adds to “human situation thinking”.
Often, the entity
being discussed is better called a social network.
Of course, seeing a business as a social network
is important; and is a primary responsibility of business managers.
Management consultants continually generate approaches to identifying problems in social networks and solving them.
The question here is whether classifying all these approaches as varieties of "systems thinking” has a useful meaning.
If every problem or situation is a system, if every entity we name or point to is a system, then the term “system” is meaningless.
My wholly unrealistic conclusion is this.
Social systems thinkers
should stop using the word “system” where there is a social network, but no
described and testable system.
Since that social
network may realise countless describable and
testable systems.
They should
resist using terms drawn from other sciences, but with different or debatable
meanings.
This paper is the last in one series of papers at the top of
the system theory page https://bit.ly/2yXGImr:
Other references:
Ref. 1: L. Von Bertalanffy “General system theory: a new approach to the unity of science” volume 23 of “Human Biology”, 1951.
Ref. 2: K. Boulding “General System Theory – The Skeleton of Science” volume 2 of “Management Science” 1956.
Ref. 3: Evgeny Morozov, in a New Yorker article
http://www.newyorker.com/magazine/2014/10/13/planning-machine
2018
Ref. 4: Kenneth C. Bausch “The Emerging Consensus in System Theory” (2001) (see also discussion here)
Read Beer’s ideas for more on Project Cyberysn, the VSM, and a list of relevant references.
This essay is pro science, pro testable theories and pro the traditions of Western thought.
It is agin’ making assertions and presenting mental models as though no evidence is needed to support them.
We surely want people recognise when fake news is not news, and distinguish pseudo science from science.
Soft sciences may be contrasted with hard
sciences in various ways.
Some assert their social or soft systems
thinking approach is more “holistic” and/or “systemic”.
To draw this contrast successfully would be to distance their
approach from general system theory
Since by definition, the latter is about
principles that apply to systems in *all* sciences.
However, both contrasts are questionable.
Holistic means considering how the parts of a whole are
related.
Or taking a view that addresses how parts
cooperate to the benefit of the whole.
See also: https://en.oxforddictionaries.com/definition/holistic
Social and soft systems thinking is no more holistic than other kinds of system thinking.
Systemic is often confused with holistic, but can mean
something a little different.
It means relating to the whole rather than
a part; reaching throughout the whole, pervasive throughout a system.
E.g. A systemic drug or disease
that reaches and has an effect on the whole of a body.
See also: https://en.oxforddictionaries.com/definition/systemic
It isn’t clear why social and soft systems thinking should be considered more systemic than other kinds.
If Feynman were alive today, he might be alarmed at trends in the arts and social sciences.
There is relativism - the doctrine that knowledge, truth, and morality exist in relation to culture, society, or historical context, and are not absolute.
There is a post modern dismissal of the scientific method, or the effort needed to apply it, collect evidence and measure things.
And “identity politics” which tends to pit social networks against each other.
It would be unfair to treat you as though you are no more or less than a representative of a social network.
You belong to many social networks at once, some with conflicting norms and aims.
You join and leave social networks; your allegiance to any particular social network may be partial or disputable.
You may be volatile and contrary; you may change your mind about what you want and will do.
It goes against human nature to presume all humans have the same competence and the same authority.
Competence and authority hierarchies in a social network are natural, to be expected.
Different people have different competencies and different authorities in different social networks at different times.
It makes little sense to treat a social network as though it were an organism or individual human.
One can compose software systems into larger systems; at every level, the system can be encapsulated behind an interface of the same kind.
One can compose human roles into larger roles, but cannot compose human actors into larger actors.
Human society is based on relationships and interactions between individual humans, both within social networks and between social networks.
Darwinian evolution explains resilience of life forms to changes in environmental conditions.
It has no goal to increase or decrease the total bio mass, though
• the biomass must have increased in the first period after life started on earth
• the biomass must have a maximum - determined by the quantity of energy and materials available
• having reached a maximum, the biomass may fluctuate below that.
The Gaia hypothesis adds a layer in top of Darwinian evolution.
The key point is that it incorporates inorganic materials into the story.
“The Gaia hypothesis is that organisms interact with their inorganic surroundings on Earth
to form a synergistic, self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.
It was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s.
Later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology.” (edited from the Wikipedia 26/08/17 entry)
The question here is not whether the Gaia hypothesis is appealing or inspiring.
The question is whether it is science or it is poetry, to be interpreted by each reader.
Is it needed to explain something? Can it be used to predict something? What test would disprove it?
Some thoughts and
opinions for your interest
For sure, the biomass not only evolves to fit a changing environment but also influences that environment - especially the atmosphere.
These have interacted in mutually beneficial ways that has helped life forms cope with changes in light from the sun.
That doesn’t mean these interactions are intentional or driven by some purposeful entity or system.
There is a circularity here.
Many happy chances have helped life on earth to evolve: e.g. the asteroid that wiped out the dinosaurs left room for human evolution.
Many of those chances may be regarded as preconditions for life as we know it today.
But we wouldn’t be here to discuss those chances if they had not so far worked in our favour.
And noting the doom saying discussed earlier, who is to say we will be here much longer?
One reader writes of what may be called the weak Gaia hypothesis.
“[It] is an explanation of why the Earth’s temperature has remained within a very narrow band given the luminosity variations of sun over geological time.
The hypothesis is that there are life dependent feedback loops in ecosphere that are responsible for this restricted variation of temperature.
Darwinian evolution is one way in which this could be achieved.
Indeed, the first formal explanatory model put forward by Lovelock and Watson, Daisy World, was a model based on Darwinian selection.
The point being that Darwinian selection is a sufficient mechanism to realise the required temperature regulation.”
Another reader writes of what may be called the strong Gaia hypothesis.
“[It] posits a powerful argument that what we describe as biomass is a coherent organism equipped with a sort of intelligence we have not yet mapped and understood.
… the purpose of Gaia is to enable the formation of life and ultimately consciousness.”
If you (reader) are determined to find something of value to you in this mystical guff, then you may not find this essay illuminating!
“The Gaia hypothesis continues to attract criticism, and be skeptically received by the scientific community.
Several recent books have criticised the hypothesis:
· “it lacks unambiguous observational support and has significant theoretical difficulties"
· “Suspended uncomfortably between tainted metaphor, fact, and false science, I prefer to leave Gaia firmly in the background"
· “it is supported neither by evolutionary theory nor by the empirical evidence of the geological record". (edited from the Wikipedia 26/08/17 entry)
The opposing Medea hypothesis was proposed in 2009 - that life has highly detrimental impacts on planetary conditions.
“Cybernetics deals with all forms of behaviour in so far as they are regular, or determinate, or reproducible.” Ashby 1956
Classical cybernetics sees the
world in terms of systems connected by information feedback loops.
A simple homeostatic system is
composed of two components - a control (or regulatory) system and a target
system (or real machine)
In many spheres and applications,
these ideas have succeeded brilliantly.
Stafford Beer was a theorist, consultant and professor at the Manchester Business
School.
He saw corporations as homeostatic
systems - full of feedback loops between the company and its suppliers, between
workers and management.
And if we can
make homeostatic corporations, why not homeostatic governments?
Beer urged politicians and
economists to employ cybernetics.
Most memorably in “Project Cyberysn.
The project met its end in September 1973, when Allende was overthrown and Chilean politics swung away from central planning.
In a New Yorker article (ref. 3), Evgeny Morozov concluded the project was utopian and scientistic, a term coined by the economist Friedrich von Hayek.
Scientism meaning “a mechanical and uncritical application of habits
of thought to fields different from those in which they have been formed.”
Read Beer’s ideas for a longer account of the project, and a discussion of whether the reality met the vision..
The Viable System
Model
After Project Cybersyn, Beer retreated from the world for a while.
He polished his ideas about applying cybernetics to a business, and gathering information feedback from workers.
In “Diagnosing the system for organisations” (1985) Beer refreshed and detailed his “Viable System Model”.
Beer said the VSM
was inspired by the structure of the human central nervous system.
But it doesn’t resemble the known structure
or workings of the human brain or nervous system.
It cannot be the VSM, since many viable systems have
nothing like a central nervous system (e.g. the solar system, a tree, a bee
hive, an oyster).
And there is scant
evidence of any business operating in a way you could say closely matches the
VSM.
A theory that cannot be disproved?
Beer wrote: “There is no 'correct' interpretation of the VSM. We have spoken instead of more or less useful interpretations.”
The VSM must be modified before it is applied, so any success or failure might be attributed to the aptitude of those making the modification.
No doubt the VSM is a useful tool when interpreted by a skilled consultant; but is it science or poetry?
And in what useful sense can we refer to any business or other social network as a single “system”.
All free-to-read materials at http://avancier.website are paid for out of
income from Avancier’s training courses and methods
licences.
If you find the web site helpful, please spread the word and
link to avancier.website in whichever social media
you use.