Data structures

You can share or show this document without the written permission of the copyright holder.
Data in motion and data in storage

► A million years ago: social animals exchanged **messages** and processed them in the light of **memories** retained.

► 200,000 BC: humans formed message using a **verbal language** in which the words typify what is described.

► 5,000 BC: humans formed message in **writing**, which facilitated the conduct of regular business operations.
Before “The Information Age”

- Human actors created, processed and moved data using:
 - clay tablets
 - pen and paper
 - typewriters and
 - snail-mail postal organisations.

- Business depended on business information being:
 - moved in messages (data flows) – often paper
 - stored in memories (data stores) – card indexes and filing cabinets
Digitisation led to “The Information Age”

► 1960 AD: IT empowered high speed message transmission and high volume memory retention. It massively increased the ability of a business to
■ capture, move, store,
■ process, and analyse business data.

► “Today’s CEOs know that the effective management and exploitation of information through IT is a key factor to business success.” (TOGAF 9.1)

► Enterprise architects recognize the importance of understanding
■ Data in motion: messages sent in business activities
■ Data in storage: memories retained
■ Meta data: the qualities of data in messages and memories.
4.5 Describe the data structures used by a business and/or its applications

- Data in storage.
- Data in motion.
- Data structures.
- Data items.
- Data lifecycle: create, store, use, archive, delete.

- As data is used throughout an organisation and throughout various applications, its state, structure and use changes.

- Candidates shall recognise the key terms listed and be able to describe how data moves through the data lifecycle, from creation to eventual deletion.
Data items and structures

- **Data item**
 - An instance of a data type that holds a specific data value.
 - Such as an argument value, a return value, or a field value in a database.

- **Data structure**
 - [A data type] a structure that arranges data items in a group or related groups.
Data store/memory structures

You can share or show this document without the written permission of the copyright holder.
Data structures in data stores

► **Data store**
 - A container for persistent data structure, accessible by software.
 - Sometimes on discs, increasingly on solid state drives.

► **Data store structures**
 - An *entity-relationship diagram* is a concept map with cardinalities added to the relationship lines.
Dashes mean *optional* at this end

Crowsfoot means *more than one* at this end

<table>
<thead>
<tr>
<th>Barker</th>
<th>Woman</th>
<th>Coach Trip</th>
<th>Choir Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Child</td>
<td>Passenger</td>
<td>Singer Performance</td>
</tr>
<tr>
<td>W</td>
<td>May bear</td>
<td>Takes</td>
<td>Needs</td>
</tr>
<tr>
<td>Was born to</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other data model notations

UML

- Customer
- Department
- Customer: 1
- Department: *
- Department: (hierarchy)
- parent: 1
- children: *

IDEF

- Department
 - Entity: DeptID
 - Relationship Name: Manages
 - Relationship: One
 - Many
 - Mandatory Existence
 - Optional Existence
- Project
 - Entity Name: ProjectID
 - Entity Name
 - Attribute Name

Barker

- Woman
 - May bear
 - Was born to
 - Child
- Coach Trip
 - Carries
 - Takes
 - Passenger
- Choir Performance
 - Needs
 - May belong to
 - Singer Performance
A naive classification of entity types

Kernel entities
Relationships between them
Attributes and characteristic entities
E.g. The core part of Salesforce.com’s logical data model

- A network of 1-to-N associations
- Over time
 - Subtypes become roles
 - Aggregations become associations
 - 1-1 associations become 1-N
 - 1 to N become N-to-N w link entities
Salesforce.com domain model – redrawn hierarchically

Kernel entities
Relationships between them
Attributes and characteristic entities

Campaign

Opportunity

Contact

Contract

Campaign Member

Opportunity Status

Quote

Opportunity Competitor

Contact Opportunity Role

Asset

Contact Contract Role

Contact Account Role

Lead

Opportunity Status

Quote

Opportunity

Campaign

Contact

Contract

Account

Case

Contact Status

Approval

Partner

Lead Status

Opportunity Status

Quote

Opportunity

Campaign

Contact

Contract

Account

Case

Contact Status

Approval

Partner

Lead Status

Opportunity Status

Quote

Opportunity

Campaign

Contact

Contract

Account

Case

Contact Status

Approval

Partner

Lead Status

Opportunity Status

Quote

Opportunity

Campaign

Contact

Contract

Account

Case

Contact Status

Approval

Partner

Link

Child of

Reports to

From

To

Characteristic

Copyright Avancier Limited 2022
Another real world example
Data flow structures

You can share or show this document without the written permission of the copyright holder.
Data structures in data flows

- **Data in motion (data flow)**
 - A message, file, form, report, or display in which data passes from a sender to a receiver.

- **Data flow (message) structures**
 - A *regular expression* is a hierarchical sentence structure composed from sequence, selection and iteration components.
A regular expression

- The formal grammar for data structures a computer can read and write

- A hierarchical structure composed from
 - sequence,
 - selection and
 - iteration

- components
Data structures in stores and flows

Data model (in store)

Opportunity
 └── Contact
 ├── Asset
 └── Contract
 └── Contact Role

Quote
 └── Case
 └── Case Status

Regular expression (in flow)

Questionnaire
 ├── Questionnaire name
 │ └── Body
 │ └── Total score
 │ └── Question
 │ └── Question Category
 │ └── Questions
 │ └── Category name
 │ └── Category score
 │ └── Question
 │ └── Not answered
 │ └── Answered
Ontologies and Concept graphs

You can share or show this document without the written permission of the copyright holder.
Types as set member definitions

- A type is the "intensional definition" of a set member.
- Naming nested sets in nested boxes (in the manner of Venn diagrams).

 - “On the Diagrammatic and Mechanical Representation of Propositions and Reasonings” in the Philosophical Magazine and Journal of Science.” British logician John Venn.1890

- The roots of this type of diagram go back at least 600 years.
Ontology as a type hierarchy

Type hierarchies are popular, and seductively simple

- Party
 - Person
 - Employee
 - Contractor
- Organization
 - Manufacturer
 - Supplier

- Business activity system element
 - Physical structure
 - Organization unit
 - Actor
- Logical structure
 - Function
 - Role
Like most such class/type hierarchies this model is more meaningfully drawn as a concept graph thus
Similarly this class/type hierarchy may be redrawn as a concept graph thus
An entity-relationship diagram is a concept graph with cardinalities added to the relationship lines.
Many-to-many relationships are resolved by link entities.
Adding cardinality to relationships

Similarly

- Physical structure
 - Organization unit
 - Employs
 - Actor
 - Realization of logical structure
 - Performer of Function (or part of it)
 - Performer of Role
 - Is performed by
 - Function
 - Role

Copyright Avancier Limited 2022